Nach Oben

Abstract

Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants. (Solanum melongena L.).

Eggplants (Solanum melongena L. cv. Bonica) were grown in a glasshouse during summer under natural light with one unbranched shoot or one shoot with 3 to 4 branches and with or without fruit in quartz sand buffered and not buffered with 0.5% CaCO3 (w : v), respectively. Nutrient solutions supplied contained nitrate or ammonium as the sole nitrogen source.
Compared with nutrient solutions containing nitrate (10 mM), solutions containing ammonium (10 mM) caused a decrease in net photosynthesis of eggplants during early stages of vegetative growth when grown in quartz sand not buffered with CaCO3. The decrease was not observed before leaves showed interveinal chlorosis. In contrast, net photosynthesis after bloom at first increased more rapidly in eggplants supplied with ammonium than with nitrate nitrogen. However, even in this case, net photosynthesis decreased four weeks later when ammonium nutrition was continued. The decrease was accompanied by epinasty and interveinal chlorosis on the lower leaves and later by severe wilting, leaf drop, stem lesions, and hampered growth of stems, roots, and fruits. These symptoms appeared later on plants not bearing fruits than on plants beating fruits. If nutrient solutions containing increasing concentrations of ammonium (0.5 – 30 mM) were supplied after the time of first fruit ripening, shoot growth and set of later flowers and fruits were promoted. In contrast, vegetative growth and reproduction was only slightly affected by increasing the concentration of nitrate in the nutrient solutions.

In quartz sand buffered with CaCO3 ammonium nutrition caused deleterious effects only under low light conditions (shade) and on young plants during rapid fruit growth. If eggplants were supplied with ammonium nitrogen before bloom, vegetative growth was promoted, and set of flowers and fruit occurred earlier than on plants supplied with nitrate. Furthermore, the number of flowers and fruit yield increased. These effects of ammonium nutrition were more pronounced when plants were grown with branched shoots than with unbranched shoots.

The results indicate that vegetative and reproductive growth of eggplants may be manipulated without causing injury to the plants by supplying ammonium nitrogen as long as the age of the plants, carbohydrate reserves of the roots, quantity of ammonium nitrogen supplied, and pH of the growth medium are favourable.



Claussen, W.; Lenz, F. 1995. Effect of ammonium and nitrate on net photosynthesis, flower formation, growth and yield of eggplants. (Solanum melongena L.). Plant and Soil 171, 267-274.