Nach Oben

Abstract

Determination of benzyl isothiocyanate metabolitis in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.).

A liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the concentration of benzyl isothiocyanate (BITC) metabolites in human plasma and urine. In this study, the following BITC metabolites have been considered: BITC–glutathione, BITC–cysteinylglycine, BITC–cysteine, and BITC–N-acetyl-l-cysteine. The assay development included: (1) synthesis of BITC conjugates acting as reference substances; (2) sample preparation based on protein precipitation and solid-phase extraction; (3) development of a quantitative LC-MS/MS method working in the multiple-reaction monitoring mode; (4) validation of the assay; (5) investigation of the stability and the reactivity of BITC conjugates in vitro; (6) application of the method to samples from a human intervention study. The lower limits of quantification were in the range of 21–183 nM depending on analyte and matrix, whereas the average recovery rates from spiked plasma and urine were approximately 85 and 75 %, respectively. BITC conjugates were found to be not stable in alkaline buffered solutions. After consumption of nasturtium, containing 1,000 ?M glucotropaeolin, the primary source of BITC, quantifiable levels of BITC–NAC, BITC–Cys, and BITC–CysGly were found in human urine samples. Maximum levels in urine were determined 4 h after the ingestion of nasturtium. With regard to the human plasma samples, all metabolites were determined including individual distributions. The work presented provides a validated LC-MS/MS method for the determination of BITC metabolites and its successful application for the analysis of samples collected in a human intervention study.



Platz, S.; Kühn, C.; Schiess, S.; Schreiner, M.; Mewis, I.; Kemper, M.; Pfeiffer, A.; Rohn, S. 2013. Determination of benzyl isothiocyanate metabolitis in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.). Analytical and Bioanalytical Chemistry, DOI 10.1007/s00216-013-7176-7.